CatgirlIntelligenceAgency/run/test-data/scc.html

328 lines
17 KiB
HTML
Raw Normal View History

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office">
<head>
<meta http-equiv="Content-Language" content="en-us" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Strongly Connected Components - Lecture by Rashid Bin Muhammad, PhD.</title>
<meta name="Author" content="Rashid Bin Muhammad, PhD."/>
<style type="text/css">
.style1 {
font-size: large;
}
.style2 {
font-size: large;
margin-left: 80px;
}
.style3 {
font-size: large;
text-align: left;
}
.style4 {
text-decoration: underline;
}
.style5 {
font-size: large;
text-align: center;
}
.style6 {
margin-left: 80px;
}
.style7 {
font-size: large;
color: #800000;
}
.style8 {
color: #0000FF;
}
.style9 {
font-size: large;
color: #0000FF;
}
.style10 {
text-align: center;
}
.style11 {
font-size: large;
margin-left: 40px;
}
.style12 {
text-align: right;
font-family: "Blackadder ITC";
}
.style13 {
font-family: "Blackadder ITC";
font-size: xx-large;
color: #FF0000;
}
.style14 {
text-align: left;
}
.style15 {
font-size: x-large;
}
.style16 {
font-family: Symbol;
}
.style17 {
font-family: "Times New Roman";
}
</style>
</head>
<body background="../../../Maingif/Bck2.gif" link="#0000FF" vlink="#0000FF" alink="#FF0000" BODYLINK="blue">
<p class="style5"><font size="4"><img SRC="../../../Maingif/redline.gif" height=2 width=640/></font></p>
<h1 class="style10">Strongly Connected Components</h1>
<p class="style5"><font size="4"><img SRC="../../../Maingif/redline.gif" height=2 width=640/></font></p>
<p class="style1"><span class="style13">D</span>ecomposing a directed graph into its strongly connected
components is a classic application of depth-first search. The problem of
finding connected components is at the heart of many graph application.
Generally speaking, the connected components of the graph correspond to
different classes of objects. The first linear-time algorithm for strongly
connected components is due to Tarjan (1972). Perhaps, the algorithm in the CLRS
is easiest to code (program) to find strongly connected components and is due to
Sharir and Kosaraju.</p>
<p class="style1">Given digraph or
directed graph G = (V, E), a strongly connected component (SCC) of G is a
maximal set of vertices C subset of V, such that for all <em>u</em>, <em>v</em>
in C, both
<em>u</em> <span class="style16">Þ</span> <em>v</em> and <em>v</em>
<span class="style16">Þ</span> <em>u</em>;
that is, both <em>u</em> and <em>v</em> are reachable from each other. In other words, two
vertices of directed graph are in the same component if and only if they are
reachable from each other.</p>
<p class="style1">&nbsp;</p>
<p class="style10"><img alt="SSC example" src="Gifs/ssc4.gif" />&nbsp;</p>
<p class="style10"><strong>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<span class="style15">&nbsp;&nbsp; C<sub>1</sub>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
C<sub>2</sub>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
C<sub>3</sub>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
C<sub>4</sub></span></strong></p>
<p class="style14"><span class="style1">The above directed graph has 4 strongly
connected components: C</span><sub><span class="style1">1</span></sub><span class="style1">,
C</span><sub><span class="style1">2</span></sub><span class="style1">, C</span><sub><span class="style1">3</span></sub><span class="style1">
and C</span><sub><span class="style1">4</span></sub><span class="style1">. If G
has an edge from some vertex in </span>C<sub><em><span class="style1">i</span></em></sub><span class="style1">
to some vertex in </span>C<sub><em><span class="style1">j</span></em></sub><span class="style1">
where </span><em><span class="style1">i</span></em><span class="style1">
</span><em><span class="style1">j</span></em><span class="style1">, then one can
reach any vertex in </span>C<sub><em><span class="style1">j</span></em></sub><span class="style1">
from any vertex in </span>C<sub><em><span class="style1">i</span></em></sub><span class="style1">
but not return. In the example, one can reach any vertex in C</span><sub><span class="style1">2</span></sub><span class="style1">
from any vertex in C</span><sub><span class="style1">1</span></sub><span class="style1">
but cannot return to C</span><sub><span class="style1">1</span></sub><span class="style1">
from C</span><sub><span class="style1">2</span></sub>.</p>
<p class="style1">&nbsp;</p>
<p class="style1">The algorithm in CLRS for finding strongly connected
components of G = (V, E) uses the transpose of G, which define as:</p>
<ul class="style6">
<li>
<p class="style1">G<sup>T</sup> = (V, E<sup>T</sup>), where E<sup>T</sup> = {(<em>u</em>,
<em>v</em>): (<em>v</em>, <em>u</em>) in E}.</p>
</li>
<li>
<p class="style1">G<sup>T</sup> is G with all edges reversed.</p>
</li>
</ul>
<p class="style1">From the given graph G, one can create G<sup>T</sup> in linear time
(i.e., &#x398;(V + E)) if using adjacency lists.</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Observation: </strong> </p>
<p class="style1">The graphs G and G<sup>T</sup> have the <span class="style4">same</span> SCC&#39;s. This means that
vertices <em>u</em> and <em>v</em> are reachable from each other in G if and only if reachable
from each other in G<sup>T</sup>.</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Component Graph</strong></p>
<p class="style1">The idea behind the computation of SCC comes from a key
property of the component graph, which is defined as follows:</p>
<p class="style3">G<sup>SCC</sup> = (V<sup>SCC</sup>, E<sup>SCC</sup>), where V<sup>SCC</sup>
has one vertex for each SCC in G and E<sup>SCC </sup>has an edge if there&#39;s an
edge between the corresponding SCC&#39;s in G.</p>
<p class="style1">For our example (above) the G<sup>SCC</sup> is:</p>
<p class="style5"><img alt="SSC example" src="Gifs/ssc5.gif" />&nbsp;</p>
<p class="style1">&nbsp;</p>
<p class="style1">The key property of G<sup>SCC</sup> is that the component graph is a dag,
which the following lemma implies.</p>
<p class="style1"><strong>Lemma</strong>&nbsp;&nbsp;&nbsp; G<sup>SCC</sup> is a dag. More formally, let C and C&#39; be
distinct SCC&#39;s in G, let u, v in C, u&#39;, v&#39; in C&#39;, and suppose there is a path
<em>u</em>
<span class="style16">Þ</span> <em>u</em>&#39; in G. Then there cannot also be a path v&#39;
<span class="style16">Þ</span> v in G.</p>
<p class="style1"><strong>Proof</strong>&nbsp;&nbsp;&nbsp; Suppose there is a path
<em>v</em>&#39; <span class="style16">Þ</span> <em>v</em> in G. Then there are paths <em>u</em>
<span class="style16">Þ</span> <em>u</em>&#39; <span class="style16">Þ</span> <em>v</em>&#39; and <em>v</em>&#39;
<span class="style16">Þ</span> <em>v</em> <span class="style16">Þ</span> <em>u</em> in G. Therefore,
<em>u</em> and <em>v</em>&#39; are reachable from each
other, so they are not in separate SCC&#39;s. </p>
<p class="style1">This completes the proof.</p>
<p class="style1">&nbsp;</p>
<p class="style7"><strong>ALGORITHM</strong></p>
<p class="style1">A DFS(G) produces a forest of DFS-trees. Let C be any strongly
connected component of G, let <em>v</em> be the first vertex on C discovered by
the DFS and let T be the DFS-tree containing <em>v</em> when DFS-visit(<em>v</em>)
is called all vertices in C are reachable from <em>v</em> along paths containing
visible vertices; DFS-visit(<em>v</em>) will visit every vertex in C, add it to
T as a descendant of <em>v</em>.</p>
<p class="style2">STRONGLY-CONNECTED-COMPONENTS (G)</p>
<p class="style2">&nbsp;1. <strong>Call</strong> DFS(G) to compute finishing
times f[u] for all <em>u</em>.<br />
&nbsp;2. <strong>Compute</strong> G<sup>T</sup><br />
&nbsp;3.<strong> Call</strong> DFS(G<sup>T</sup>), but in the main loop,
consider vertices in order of decreasing f[<em>u</em>] (as computed in first DFS)<br />
<strong>&nbsp;</strong>4.<strong> Output</strong> the vertices in each tree of
the depth-first forest formed in second DFS as a separate SCC.</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Time</strong>: The algorithm takes linear time i.e.,
θ(V + E), to compute SCC of a digraph G.</p>
<p class="style1">From our <strong>Example</strong> (above): </p>
<p class="style11">1. Do DFS<br />
2. G<sup>T</sup><br />
3. DFS (roots blackened)</p>
<p class="style5"><img alt="SSC example" src="Gifs/ssc6.gif" /></p>
<p class="style1">&nbsp;</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Another Example</strong> (CLRS)&nbsp;&nbsp;&nbsp;
Consider a graph G = (V, E).</p>
<p class="style1">1. Call DFS(G)</p>
<p class="style5"><font size="4"><img border="0" src="Gifs/ssc1.gif" width="381" height="148"></font></p>
<p class="style1">2. Compute G<sup>T</sup></p>
<p class="style5"><font size="4"><img border="0" src="Gifs/ssc2.gif" width="379" height="149"/></font></p>
<p class="style1">3. Call DFS(G<sup>T</sup>) but this time consider the vertices
in order to decreasing finish time.</p>
<p class="style5">
<font size="4">
<img border="0" src="Gifs/ssc3.gif" width="322" height="108"/></font></p>
<p class="style1">4. Output the vertices of each tree in the DFS-forest as a
separate strongly connected components.</p>
<p class="style5">{<em>a</em>, <em>b</em>, <em>e</em>}, {<em>c</em>, <em>d</em>},
{<em>f</em>, <em>g</em>}, and {<em>h</em>}</p>
<p class="style1">&nbsp;</p>
<p class="style1"><span class="style8"><strong>Now the question is how can this possibly work</strong></span>?</p>
<p class="style1"><strong>Idea</strong>&nbsp;&nbsp;&nbsp; By considering vertices in second DFS in decreasing order of
finishing times from first DFS, we are visiting vertices of the component graph
in topological sort order.</p>
<p class="style1">To prove that it really works, first we deal with two notational
issues:</p>
<ul>
<li>
<p class="style1">We will be discussing d[<em>u</em>] and f[<em>u</em>]. These
always refer to the <span class="style4">first</span> DFS in the above algorithm.</p>
</li>
<li>
<p class="style1">We extend notation for <em>d</em> and <em>f</em> to sets of
vertices U subset V:</p>
<ul>
<li>
<p class="style1">d(U) = min<sub>u in U</sub>
{d[<em>u</em>]}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
(earliest discovery time of any vertex in U)</p>
</li>
<li>
<p class="style1">f(U) = min<sub>u in U</sub>
{f[<em>u</em>]}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
(latest finishing time of any vertex in U)</p>
</li>
</ul>
</li>
</ul>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Lemma</strong>&nbsp;&nbsp;&nbsp; Let C and C&#39; be distinct SCC&#39;s in G = (V, E). Suppose there is
an edge (<em>u</em>, <em>v</em>) in E such that <em>u</em> in C and
<em>v</em> in C&#39;.
Then f(C) &gt; f(C&#39;).</p>
<p class="style5"><img alt="scc6-Lemma1" src="Gifs/scc6-lemma.gif" />&nbsp;</p>
<p class="style1"><strong>Proof</strong>&nbsp;&nbsp;&nbsp; There are two cases, depending on which SCC had the first
discovered vertex during the first DFS.</p>
<p class="style1"><strong>Case i.</strong> If d(C) &gt; d(C&#39;), let <em>x</em> be the first vertex discovered
in C. At time d[<em>x</em>], all vertices in C and C&#39; are white. Thus, there exist paths
of white vertices from <em>x</em> to all vertices in C and C&#39;.</p>
<p class="style1">By the white-path theorem, all vertices in C and C&#39; are
descendants of <em>x</em> in depth-first tree.</p>
<p class="style1">By the parenthesis theorem, we have f[<em>x</em>] = f(C) &gt; f(C&#39;).</p>
<p class="style1"><strong>Case ii.</strong> If d(C) &gt; d(C&#39;), let <em>y</em> be the first vertex discovered
in C&#39;. At time d[<em>y</em>], all vertices in C&#39; are white and there is a white path from
<em>y</em> to each vertex in C. This implies that all vertices in C&#39; become descendants
of <em>y</em>. Again, f[y] = f(C&#39;).</p>
<p class="style1">At time d[<em>y</em>], all vertices in C are white.</p>
<p class="style1">By earlier lemma, since there is an edge (<em>u</em>, <em>v</em>), we cannot
have a path from C&#39; to C. So, no vertex in C is reachable from <em>y</em>. Therefore, at
time f[<em>y</em>], all vertices in C are still white. Therefore, for all <em>w</em> in C, f[<em>w</em>] &gt;
f[<em>y</em>], which implies that f(C) &gt; f(C&#39;).</p>
<p class="style1">This completes the proof.</p>
<p class="style1"><strong>Corollary</strong>&nbsp;&nbsp;&nbsp; Let C and C&#39; be distinct SCC&#39;s in G = (V, E). Suppose there is
an edge (<em>u</em>, <em>v</em>) in E<sup>T</sup> where <em>u</em> in C and
<em>v</em> in C&#39;. Then f(C) &lt;
f(C&#39;).</p>
<p class="style1"><strong>Proof</strong>&nbsp;&nbsp;&nbsp; Edge (<em>u</em>, <em>v</em>)
in E<sup>T</sup> implies (<em>v</em>,
<em>u</em>) in E.
Since SCC&#39;s of G and G<sup>T</sup> are the same, f(C&#39;) &gt; f(C). This completes
the proof.</p>
<p class="style1"><strong>Corollary</strong>&nbsp;&nbsp;&nbsp; Let C and C&#39; be distinct SCC&#39;s in G = (V, E), and suppose that
f(C) &gt; f(C&#39;). Then there cannot be an edge from C to C&#39; in G<sup>T</sup>.</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Proof Idea</strong>&nbsp;&nbsp;&nbsp; It&#39;s the contrapositive of the previous corollary.</p>
<p class="style1">&nbsp;</p>
<p class="style9"><strong>Now, we have the intuition to understand why the SCC procedure
works.</strong></p>
<p class="style1">When we do the second DFS, on G<sup>T</sup>, start with SCC C
such that f(C) is maximum. The second DFS starts from some <em>x</em> in C, and it visits
all vertices in C. Corollary says that since f(C) &gt; f(C&#39;) for all C&#39;
<span class="style17"></span> C, there
are no edges from C to C&#39; in G<sup>T</sup>. Therefore, DFS will visit only vertices in C.</p>
<p class="style1">Which means that the depth-first tree rooted at <em>x</em> contains
<span class="style4">exactly</span> the vertices of C.</p>
<p class="style1">The next root chosen in the second DFS is in SCC C&#39; such that
f(C&#39;) is maximum over all SCC&#39;s other than C. DFS visits all vertices in C&#39;, but
the only edges out of C&#39; go to C, <span class="style4">which we&#39;ve already visited</span>.</p>
<p class="style1">Therefore, the only tree edges will be to vertices in C&#39;.</p>
<p class="style1">We can continue the process.</p>
<p class="style1">Each time we choose a root for the second DFS, it can reach
only</p>
<ul>
<li>
<p class="style1">vertices in its SCC&nbsp; &#x203E;&nbsp; get tree edges to these,</p>
</li>
<li>
<p class="style1">vertices in SCC&#39;s <span class="style4">already visited</span> in second
DFS&nbsp; &#x203E;&nbsp; get <span class="style4">no</span> tree edges to these.</p>
</li>
</ul>
<p class="style1">We are visiting vertices of (G<sup>T</sup>)<sup>SCC</sup> in reverse of
topologically sorted order. [CLRS has a formal proof.]</p>
<p class="style1">&nbsp;</p>
<p class="style1">Before leaving strongly connected components, lets prove that
the component graph of G = (V, E) is a directed acyclic graph.</p>
<p class="style1"><br />
<strong>Proof</strong> (by contradiction)&nbsp;&nbsp;&nbsp; Suppose component
graph of G = (V, E) was not a DAG and G comprised of a cycle consisting of
vertices v<sub>1</sub>, v<sub>2</sub> , . . . , v<sub>n</sub> . Each <em>v<sub>i</sub></em>
corresponds to a strongly connected component (SCC) of component graph G. If v<sub>1</sub>,
v<sub>2</sub> , . . . , v<sub>n</sub> themselves form a cycle then each <em>v<sub>i</sub></em>
( <em>i</em> runs from 1 to <em>n</em>) should have been included in the SCC
corresponding to <em>v<sub>j</sub></em> ( <em>j</em> runs from 1 to <em>n</em>
and <em>i <span class="style17"></span> j</em>). But each of the vertices is a vertex from a
difference SCC of G. Hence, we have a contradiction! Therefore, SCC of G is a
directed acyclic graph.<br />
</p>
<p class="style1">&nbsp;</p>
<p class="style1"><strong>Related Problems</strong></p>
<p class="style11">1. Edge-vertex connectivity problem.<br />
2. Shortest path&nbsp;problem.</p>
<p class="style1">&nbsp;</p>
<p class="style5"><font size="4"><img SRC="../../../Maingif/redline.gif" height=2 width=640/></font></p>
<p class="style5">
<a href="../../algorithm.html">
<font size="4">
<img src="../../../Maingif/back.gif" border=0 height=47 width=49/></font></a></p>
<p class="style12">Updated: March 13, 2010.</p>
</body>
</html>